An accelerated iterative method for computing weighted Moore-Penrose inverse
نویسندگان
چکیده
The goal of this paper is to present an accelerated iterative method for computing weighted Moore–Penrose inverse. Analysis of convergence is included to show that the proposed scheme has sixth-order convergence. Using a proper initial matrix, a sequence of iterates will be produced, which is convergent to the weighted Moore–Penrose inverse. Numerical experiments are reported to show the efficiency of the new method. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
متن کاملUniversal Iterative Methods for Computing Generalized Inverses
In this paper we construct a few iterative processes for computing {1, 2} inverses of a linear bounded operator, based on the hyper-power iterative method or the Neumann-type expansion. Under the suitable conditions these methods converge to the {1, 2, 3} or {1, 2, 4} inverses. Also, we specify conditions when the iterative processes converge to the Moore-Penrose inverse, the weighted Moore-Pen...
متن کاملSymbolic computation of weighted Moore-Penrose inverse using partitioning method
We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...
متن کاملTwo improvements of the iterative method for computing Moore-Penrose inverse based on Penrose equations
An iterative algorithm for estimating the Moore-Penrose generalized inverse is developed. The main motive for the construction of algorithm is simultaneous usage of Penrose equations (2) and (4). Convergence properties of the introduced method are considered as well as their first-order and the second-order error terms. Numerical experience is also presented. AMS Subj. Class.: 15A09.
متن کاملEffective partitioning method for computing weighted Moore-Penrose inverse
We introduce a method and algorithm for computing the weighted MoorePenrose inverse of multiple-variable polynomial matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are generalizations of algorithms developed in [24] to multiple variable rational and polynomial matrices and improvements of these algorithms on sparse matrices. Al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 222 شماره
صفحات -
تاریخ انتشار 2013